Jump to content
Claris Engage 2025 - March 25-26 Austin Texas ×

This topic is 1515 days old. Please don't post here. Open a new topic instead.

Recommended Posts

Posted

kitten_224.pngWe have started to look on the Windows Learning APIs to implement some functions for our plugins. Since 2017 we have CoreML functions for macOS. FileMaker 19 now ships similar functions built-in, but we think the plugin can still do more. As we are now using newer Visual Studio 2019, we can finally also check the Windows Learning functions:

You can use ONNX Models with the classes, so check the Microsoft website on how to get models. This mainly points to the ONNX Model Zoo, which has some interesting models available.

We started by porting the desktop SqueezeNetObjectDetection example from the Windows-Machine-Learning repository. You may want to download the SqueezeNet.onnx file from models folder and the kitten_224.png file from the media folder. 

WindowsML.jpg

For FileMaker we embrace JSON and use it to pass values for the new WindowsML functions. Use WindowsML.Open to load the model and query all information about it with WindowsML.Description function. Use bind functions like WindowsML.BindImageFile to assign input image, run the model with WindowsML.Evaluate function and then you get a result as JSON. You may use our JSON functions to work on the result and show it to the user.

A difference between the macOS/iOS implementation by Apple and the one by Microsoft is the missing of labels for the latter. For Windows you get a Labels.txt file with the list of what index in the result points to what label they mean. Our example code will show how to handle this.

Those functions and new classes are coming for next pre-release versions in October 2020. We may get a good start set and may add more as needed later. Especially as we learn what other models may need as input and output features.

×
×
  • Create New...

Important Information

By using this site, you agree to our Terms of Use.